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Abstract: A design method of the closed test section for subsonic wind tunnels is presented.
The governing equation involved is the integro-differential form of the momentum equation.
The method is applied to the rectangular and circular test section. A numerical example is
achieved.
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1. INTRODUCTION

One of the most important quality conditions of closed test section design is the
absence of the longitudinal gradient of pressure. There are two methods to accomplish this
condition:

a) The test section with solid walls has continuos increasing cross sections to cancel
the effects of development of the boundary layer. Pankhurst recommends to design the walls
flared with the displacement thickness δ1  (Pankhurst, 1952). The common design practice
uses 0.20 - 0.50 deg. of divergence for circular section, and up to 10 deg. for rectangular section
(Marinescu, 1970). We notice that a single criterion for the calculation of flare angle does not
exist.

b) Another solution is to use porous walls (Vaucheret, 1988). For two-dimensional
subsonic wind tunnel of high speed, a suction window may be used to reduce sidewall
boundary layer effect (Barnwell, 1993). Unfortunately this kind of test chamber is expensive,
hard to construct and requires special apparatus.

The purpose of this paper is to suggest a new design method of the test section for
subsonic wind tunnels. The method is based on the integro-differential form of the momentum
equation written under the imposed criterion of a null longitudinal gradient of the pressure.
This equation is then transformed into an ordinary differential equation: the cross-section
equation, which involves only the boundary layer parameters δ1 , δ2 , cf and the cross-section
main parameters: area and perimeter (Popescu, 1998). Though developed for the rectangular
and for the circular section, the method can be widely used to test sections of any form.
Finally, a numeric example is performed.

2. BASIC HYPOTHESES

The suggested method is based on the following basic hypotheses:



(H1) The test section is rectangular and constantly increasing to compensate the
effects of the boundary layer (Figure 1).

The static pressure would decrease if the section remained constant, due to the
development of the boundary layer on the test chamber walls. Increasing this section
compensates this tendency. The increasing section will have to ensure a constant static
pressure along the test chamber (Pankhurst, 1952).

(H2) The static pressure is constant in any cross-section of the test section.

x

j
k

i

a
0b

0

a(z)

z

b(z)

z

y

Figure 1 - Closed test section.

(H3) The flow is of the constant velocity nucleus type.
This hypothesis is justified by the presence of the contraction nozzle. The constant

velocity nucleus occupies only the central part SC (z) in any section (Fig.2). The peripheral

area S zδ( ) is occupied by the boundary layer.
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Figure 2- Velocity distribution in any cross-section of the test chamber



(H4) We shall assume that in the section S(z) the boundary layer has the same

thickness δ( )z , (Fig. 3).
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Figure 3- Notations for cross-section.

(H5) The velocity distribution in the boundary layer will have a unidimensional form.
This will neglect the effect of the corners in which the distribution is bidimensional. In order
to accomplish this hypothesis, the edged corners of the rectangular section must be cutted
obliquely, or rounded.

The other hypotheses are secondary and will be introduced later.

3. THE CROSS-SECTION DIFFERENTIAL EQUATION

We separate the elementary domain (D) from the test section with help of the flux
sections S(z), ( )S z z+ ∆ . The rigid boundary-surface of the tunnel wall is denoted with SP

(Fig.4).
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Figure 4 -The elementary domain D



We shall design the test section imposing a null longitudinal gradient of the pressure.
According also to the (H2) hypothesis, we realize that the pressure is constant in the whole
test section.

We shall assume the first supplementary hypothesis
(H6) The pressure and density pulsations are negligible ′ = ′ =p 0 0ρ . Then p p= ~

and ρ ρ= ~ .
According to (H5), the momentum equation on the domain D has the following form
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~
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stresses; Tij
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Let us denote u u3 3= ~ . Projecting Eq.1 according to k i≡ 3  direction, and using the
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Applying the Gauss-Ostrogradski theorem, we find p n d
p
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According to the design condition imposed, this integral will be null.
To derive from Eq.2 an integro-differential equation, we need the following results:
Proposition. If  f  is a function of C1  class, then
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where, by definition, ( )sin ,θ = − n k .

Proof: The proof for eq.(3) is obvious. We notice that
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Hence, when ∆z → 0 , we derive Eq.4.

Involving these two results, from Eq.(2) we derive the integro-differential form of
momentum equation particularized for the test section
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From the Bercker-Iacob lemma, we derive that ( )~
cosT nj

V
j f3 = ⋅τ θ , where τ f  is the

wall shear stress. We shall denote with A(z) the area of the cross-section S(z), and with P(z)
the perimeter. For a rectangular section, we have
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According to the hypothesis (H3) we have
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where u(x,y) is a velocity distribution of the boundary layer type. It results:
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To calculate the integral, according to (H6), we shall “develop” the perimetral area

( )S zδ  and we shall approximate it with a rectangle of the sides P(z) and δ(z). Thus, after an

elementary calculus, we obtain
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According to the same hypothesis, we find
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Replacing in Eq.(5) we derive the differential equation of the test cross-section
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where c Uf f= −2 0
2τ ρ/  is the friction coefficient.

We notice that
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and, in a first approximation, we shall neglect this term. Eq. (9) becomes
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3. THE CHARACTERISTIC PARAMETERS OF THE BOUNDARY LAYER

We shall assume the second supplementary hypothesis:
(H7) The boundary layer is turbulent even from the beginning, due to the vortex

generators.
We shall consider a logarithmic velocity distribution in the boundary layer:
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According to the Coles model for smooth walls, A=2,5 and B=5 (Reynolds, 1974). We

denote with u zf ( ) the wall-friction velocity u z zf f( ) ( ) /= τ ρ , and with y f  the reference

length y uf f= ν / .



From the match condition ( ) ( )
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thickness and the momentum-loss thickness, we obtain (Reynolds, 1974):
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Schlichting has suggested a formula for the friction coefficient, which gives very good

results in the domain 10 105 9< <ReL :

( )cf z= − −2 0 6510
2,3

log Re ,  (13)

where Re / , Re /L zU L U z= ⋅ = ⋅0 0ν ν .
To these expressions, one adds up (Schlichting, 1987):
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4. THE CASE OF THE RECTANGULAR SECTION

We impose a uniform increase of the cross-section sides
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The length of the test chamber will be denoted with L. We introduce the following
dimensionless quantities
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It results ( )dA

dz
L

dg

dz
a b g= + +2 40 0  and ( )dP

dz

dg

dz
z= 8 .

Replacing these relations in eq.(9’) and using eq.(14), we derive
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We add the following equations
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and the initial condition

( )g 0 0= (20)

The eq.(17), (18), (19), and (20) form an initial-value problem. Because the implied
functions are supposed to be of C1 class, the local existence and uniqueness of the solution are
ensured.

5. THE CASE OF THE CIRCULAR SECTION

We also impose a uniform increase of the cross-section

( ) ( )R z R g z= +0 (21)

Then ( ) ( )( )A z R g z= ⋅ +π 0
2

 and ( ) ( )( )P z R g z= ⋅ ⋅ +2 0π . Following the same procedure, we

derive the circular cross-section equation
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where R R L0 0= / .

6. RESULTS AND DISCUSSIONS

1) We have done a computation for a rectangular test chamber with the dimensions:
a0=0.140m; b0 =0.290m, L=0.5m. The corners are cutted obliquely at ( )1 7 0/ ⋅ a . The flow

parameters have the following values: U0=90m/s; p0=101000 Pa; ν=15*10-6m2/s. We denote
by L0 the length of the antechamber and we assume that the effective origin of the boundary
layer is 30 mm before the antechamber.

The differential equation has been numerically solved with the Runge-Kutta method of
the 4-th order, improved by Gill. A correction with the 4-th order Adams-Moulton scheme
was done finally (Ixaru, 1979).

We shall denote by ( )( )α = arctan /g L L  the half-divergence angle and by

( ) ( ) ( )∆δ1 1 1 0L L= −δ δ  the Pankhurst’s design criterion.

The results are graphically and numerically presented in Fig. 5 and in Table 1.



Figure 5- g(z) variation along the rectangular test section; L0=0

Tab. 1
L0     [mm] 0 50 100 150 200 250
α       [deg] 0.128 0.122 0.118 0.115 0.112 0.110
g(L)  [mm] 1.123 1.067 1.031 1.004 0.982 0.964
∆δ1   [mm] 1.113 1.053 1.017 0.989 0.966 0.946

b) From (17), it results 
dg

dz

d

dz
>

δ1 . Involving the differential inequality theorem, we

derive that ( ) ( ) ( ) ( ) [ ]g z z z L> − ∀ ∈δ δ1 1 0 0, . This trend was numerically confirmed (see

Tab.1).
c) The problem concerning the boundary layer’s parameters in the exit zone of the

contraction cone was avoided by assignation of the origin of the turbulent boundary layer at -
L0-0.03. A significant improvement, as to the applicability of the method, will be achieved by
supplementary experimental data regarding the boundary layer’s evolution in the above
mentioned zone.

d) The method may be adapted as well for other regular shapes of cross-section, too. In
all cases for which the hypothesis (H4) is fulfilled (the corner effects may be neglected),
eq.(9) remains unmodified. Also, the motion regime (Re number) may change only the
auxiliary eq. (18) and (19). For both these reasons, we can see eq. (9) like a universal
equation. This can be considered the main advantage of this method.

For comparison, numerical calculations were done for a circular section, too with the

same initial area π⋅ = ⋅R a b0
2

0 0 . The results are practically the same with those obtained for

the rectangular section with cutted corners. For a rectangular section with edged corners, this
proximity should be expected no more.

The values obtained for the half-divergence angle α are lying in the interval
recommended by the common design practice.

e) The eq. (9’) was obtained as a result of an approximation, by neglecting some small

terms (for instance, ( )~
T

u

y

u

y
V
33 2 1

52 1 10= + ≅ ⋅ ⋅−µ µ
∂
∂

∂
∂

 ). To increase the computation

precision, thus getting closer to the exact solution, the problem may be considered as being of
successive approximations. Thus after solving the initial value problem (17)+(20) we shall



determine at a first approximation the values of ( )dP

dz
z  and ( )P z . Others, such as, for instance

( )µ µ
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u u, ' ' , will be estimated on the basis of the experimental data found in

literature (Cebeci, 1974).

For other terms, such ( )( )d
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U
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 δ , the estimation will be a difficult

task. The experimental data presented in specialized papers are reported on variations
according to the normal direction. Only a few experimental data regarding the longitudinal
variations are available. Especially for this reason, a qualitative analysis of the small
parameter's influences on the solution is required. We will focus on this subject in a future
paper.
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